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External quality factors are significant quantities to describe losses via waveguide ports in radio frequency resonators. The current
contribution presents a novel approach to determine external quality factors by means of a two-step procedure: First, a state-space
model for the lossless radio frequency structure is generated and its model order is reduced. Subsequently, a perturbation method
is applied on the reduced model so that external losses are accounted for. The advantage of this approach results from the fact that
the challenges in dealing with lossy systems are shifted to the reduced order model. This significantly saves computational costs.
The present paper provides a short overview on existing methods to compute external quality factors. Then, the novel approach is
introduced and validated in terms of accuracy and computational time by means of commercial software.
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I. INTRODUCTION

THE quality factor is a universal and commonly known
measure to quantify losses in resonant systems. It is

defined by

Qn =
2πfnWsto,n

Plss,n
, (1)

where fn is the resonant frequency, Wsto,n the energy stored,
and Plss,n the averaged loss of energy. All quantities refer
to the nth resonance of the structure under consideration.
Generally, a variety of loss mechanisms is covered by Plss,n.

The largest quality factors occurring in nature are observed
at resonances of superconducting cavity resonators [1], such
as shown in Fig. 1. These cavity resonators are an essential
part of modern particle accelerators. On account of the small
surface losses of superconducting structures, the main term
contributing to Plss,n are losses of energy via waveguide ports
of the structure (red line in Fig. 1). These losses are often
referred to as external losses Pext,n and the quality factor
accounting for solely external losses is called external quality
factor Qext,n. Literature provides a set of different methods
to determine external quality factors, which are based on a
discrete formulation of Maxwell’s equations (see [2] for a
rigorous overview). Transient simulations to extract Qext,n

suffer e.g. from long simulation times. Approaches based on
scattering parameters require a dense and therefore expen-
sive sampling of scattering spectra because resonances with
large quality factors are expressed in narrow-banded peaks
in frequency-domain transfer functions. Moreover, a system
identification, which is in fact a non-linear optimization, has
to be performed. Another way of determining Qext,n is solving
a large non-linear and non-symmetric eigenvalue problem,
which arises directly from the discretization. Unfortunately,
this scheme is numerically instable and costly. In addition to
the mentioned methods, [2] proposes an approach based on
eigenmodes of the lossless structure. However, it is reported
that the scheme converges slowly depending on the number
of considered eigenmodes.

Fig. 1. Superconducting cavity resonator with nine elliptical cells. The
boundaries are assumed to be perfect electrically conducting and the inner
domain is assumed to be made of vacuum. The red lines mark waveguide
ports.

This paper proposes a new approach to compute Qext,n,
which overcomes the described drawbacks. First, a state-space
model of the lossless structure is generated by means of
discretizing the structure. Subsequently, this state-space model
is reduced by the employment of a model order reduction
approach. The fact that the state-space model describes a
lossless structure reduces the computational demand of the
model order reduction significantly, i.e. no complex algebra is
required and the state-matrix of the state-space system is skew-
symmetric. Finally, a perturbation approach is applied to the
reduced state-space model to account for external losses. The
proposed scheme shifts the hard work of dealing with lossy
systems to the reduced model. Hereby, the treatment of losses
is significantly simplified.

II. GENERAL THEORY

In a first step, a large state-space system is delivered by
the discretization of the structure under consideration using
e.g. the finite integration technique (FIT). This first-order
derivative state-space system is reduced in order to obtain

d

dt
xrd(t) = Ard xrd(t) +Brd i(t), (2)

v(t) = BT
rd xrd(t). (3)

Here, xrd(t) is the state vector of the reduced order model,
whereas Ard and Brd are the respective state and input/output
matrices. The vectors v(t) and i(t) contain modal voltages and
currents, which refer to 2D port modes assigned on the cross



section of the waveguide ports. The modal voltages of this
first-order derivative state-space system are fed back to the
modal currents by

d

dt
xtc(t) = Atc xtc(t) +Btcv(t), (4)

i(t) = −Ctc xtc(t)−Dtc v(t). (5)

The state-space system (4) - (5) is designed so that the
infinite guide termination conditions [3] for all waveguide port
modes are accounted for in (2) - (3). In other words, (4) -
(5) emulates the short waveguide with constant cross section
(refer to Fig. 1) to be infinitely long so that reflections are
avoided. Thus, energy can leave the structure and external
losses are considered. The matching state-space equations (4)
- (5) are interpretable as auxiliary differential equations. Their
generation based on Padé approximations with different orders
is depicted in detail in [3]. Using (4) - (5) as a feedback for
(2) - (3) results in a state-space system, whose non-symmetric
state matrix is given by

Ama =

(
Ard −BrdDtcB

T
rd −BrdCtc

BtcB
T
rd Atc

)
(6)

Finally, the frequencies of the loaded resonances and the
external quality factors of the structure are determined by

fn = =(λn)/2/π, (7)
Qext,n = =(λn)/<(λn)/2, (8)

whereas λn are the complex eigenvalues of Ama and =(λn)
and <(λn) its imaginary and real part, respectively. Despite
the fact that Ama is non-symmetric, the computation of its
eigenvalues is straightforward due to the size of the matrix.

III. NUMERICAL VALIDATION

To validate the proposed approach, the cavity resonator
depicted in Fig. 1 is discretized with a hexahedral mesh
by means of FIT [4], using three symmetry planes. The
symmetry conditions are chosen so that TM monopole and
TE quadrupole modes are considered. This results in two
(one for each symmetry condition on the transverse symmetry
plane of the cavity) state-space models with 651,726 degrees
of freedom. They are reduced to state-space models with
70 degrees of freedom. For the actual validation, (4) - (5)
are constructed based on a zeroth order Padé approximation
(simplest case). This special case is identical to the approach
proposed in [5]. It delivers two matrices Ama (one for each
symmetry condition) with 70 rows and columns. Thus, the
computation of the eigenvalues and the final determination of
fn and Qext,n is computationally inexpensive. Fig. 2 shows
the external quality factors of resonances belonging to the
TM monopole and to the TE quadrupole bands. Red crosses
denote the external quality factors computed by the proposed
approach (total computational time: 10min), whereas the blue
dots show the external quality factors directly computed with
the JDM eigenmode solver of [4] (total computational time:
1 h 15min). According to the documentation, [4] determines
the external quality factors from the lossless eigenmodes of
the structure in a post-processing step. Unfortunately, the
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Fig. 2. External quality factors of monopole and quadrupole modes of the
cavity depicted in Fig. 1. The blue dots denote the external quality factors
delivered by the eigenmode solver of [4]. The red crosses represent the quality
factors obtained by the proposed approach. For the comparison a 0th order
Padé approximation is used to model the infinite guide termination condition,
i.e. (5) is simplified to i(t) = −Dtc v(t).

underlying method is not described in the documentation of
the program. All computational times mentioned here are wall-
clock times and refer to a computer equipped with an Intel(R)
Core(TM) i5-2400 CPU @ 3.10GHz and 8GB RAM.

IV. SUMMARY AND OUTLOOK

The results delivered by the proposed method coincide well
with results obtained by commercial software while saving
computational time. The full contribution describes the entire
approach in a more detailed manner.
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